REVOLUTIONIZING AUTOIMMUNE DISEASE TREATMENT: EXPLORING IMMUNE CHECKPOINTS AS INNOVATIVE THERAPEUTIC TARGETS

Authors

  • Boltayeva Dono Bakhtiyorovna Assistant professor in the “Medical faculty” of the Turon Zar-med University

Keywords:

immune checkpoints, autoimmune diseases, therapeutics, fusion protein, viral protein, nucleic acid, cell

Abstract

Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.

References

Murphy K. Autoimmunity and transplantation. In: Janeway’sImmunobiology, 8th Edition. New York City, USA: Garland Science; (2012). p. 201.

Lerner A, Jeremias P, Matthias T. The World Incidence and Prevalence of Autoimmune Diseases is Increasing. Int J Celiac Dis (2015) 3(4):151–5. 10.12691/ijcd-3-4-8

Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev (2011) 241(1):180–205. 10.1111/j.1600-065X.2011.01011.

De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol (2018) 9:1909. 10.3389/fimmu.2018.01909

Wilde B, Hua F, Dolff S, Jun C, Cai X, Specker C, et al.. Aberrant expression of the negative costimulator PD-1 on T cells in granulomatosis with polyangiitis. Rheumatol (Oxford England) (2012) 51(7):1188–97. 10.1093/rheumatology/kes034

Steiner K, Moosig F, Csernok E, Selleng K, Gross WL, Fleischer B, et al.. Increased expression of CTLA-4 (CD152) by T and B lymphocytes in Wegener’s granulomatosis. ClinExpImmunol (2001) 126(1):143–50. 10.1046/j.1365-2249.2001.01575.x

Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity (1994) 1(9):793–801. 10.1016/S1074-7613(94)80021-9

Chambers CA, Kuhns MS, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc Natl AcadSci USA (1999) 96(15):8603–8. 10.1073/pnas.96.15.8603

Zeng J, Bao J, Wang H, Zhang H, Zhang J, Wang W, et al.. [Construction and identification of mouse BTLA lentiviral expression vector]. Xi Bao Yu Fen ZiMian Yi XueZaZhi Chin J Cell MolImmunol (2013) 29(3):261–4.

Gao J, Zheng Q, Xin N, Wang W, Zhao C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci (2017) 108(10):1934–8. 10.1111/cas.13324

Zhang D, Hu W, Xie J, Zhang Y, Zhou B, Liu X, et al.. TIGIT-Fc alleviates acute graft-versus-host disease by suppressing CTL activation via promoting the generation of immunoregulatory dendritic cells. BiochimBiophysActaMol Basis Dis (2018) 1864(9 Pt B):3085–98. 10.1016/j.bbadis.2018.06.022

Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, et al.. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol (Baltimore Md 1950) (2013) 190(9):4899–909. 10.4049/jimmunol.1300271

Ohno T, Zhang C, Kondo Y, Kang S, Furusawa E, Tsuchiya K, et al.. The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune responses. IntImmunol (2018) 30(1):3–11. 10.1093/intimm/dxx070

Li T, Ma R, Zhu JY, Wang FS, Huang L, Leng XS. PD-1/PD-L1 costimulatory pathway-induced mouse islet transplantation immune tolerance. Transplant Proc (2015) 47(1):165–70. 10.1016/j.transproceed.2014.10.043

Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev (2010) 236:219–42. 10.1111/j.1600-065X.2010.00923

Momtaz P, Postow MA. Immunologic checkpoints in cancer therapy: focus on the programmed death-1 (PD-1) receptor pathway. Pharmacogenom Personalized Med (2014) 7:357–65. 10.2147/PGPM.S53163

Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell (1996) 87(3):427–36. 10.1016/S0092-8674(00)81363-X

Wada J, Kanwar YS. Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin. J BiolChem (1997) 272(9):6078–86. 10.1074/jbc.272.9.6078

Caserta S, Nausch N, Sawtell A, Drummond R, Barr T, Macdonald AS, et al.. Chronic infection drives expression of the inhibitory receptor CD200R, and its ligand CD200, by mouse and human CD4 T cells. PloS One (2012) 7(4):e35466. 10.1371/journal.pone.0035466

Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, et al.. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell MolImmunol (2019) 16(12):908–20. 10.1038/s41423-019-0204-6

Harada H, Suzu S, Hayashi Y, Okada S. BT-IgSF, a novel immunoglobulin superfamily protein, functions as a cell adhesion molecule. J Cell Physiol (2005) 204(3):919–26. 10.1002/jcp.20361

Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J (1992) 11(11):3887–95. 10.1002/j.1460-2075.1992.tb05481

Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al.. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol (2003) 4(7):670–9. 10.1038/ni944

Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al.. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature (2002) 415(6871):536–41. 10.1038/415536a

Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al.. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol (2009) 10(1):48–57. 10.1038/ni.1674

Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al.. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med (2011) 208(3):577–92. 10.1084/jem.20100619

Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T, et al.. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med (1992) 176(2):327–37. 10.1084/jem.176.2.327

Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, et al.. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity (2000) 13(2):233–42. 10.1016/S1074-7613(00)00023-6

Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl AcadSci USA (2005) 102(33):11823–8. 10.1073/pnas.0505497102

Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity (1999) 11(2):141–51. 10.1016/S1074-7613(00)80089-8

Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al.. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. IntImmunol (2010) 22(6):443–52. 10.1093/intimm/dxq026

Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al.. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol (Baltimore Md 1950) (2011) 186(3):1338–42. 10.4049/jimmunol.1003081

Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, et al.. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol (Baltimore Md 1950) (2011) 187(7):3493–8. 10.4049/jimmunol.1100714

Jha V, Workman CJ, McGaha TL, Li L, Vas J, Vignali DA, et al.. Lymphocyte Activation Gene-3 (LAG-3) negatively regulates environmentally-induced autoimmunity. PloS One (2014) 9(8):e104484. 10.1371/journal.pone.0104484

Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity (1995) 3(5):541–7. 10.1016/1074-7613(95)90125-6

Zhao P, Wang P, Dong S, Zhou Z, Cao Y, Yagita H, et al.. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Engineer (2019) 3(4):292–305. 10.1038/s41551-019-0360-0

Tocut M, Brenner R, Zandman-Goddard G. Autoimmune phenomena and disease in cancer patients treated with immune checkpoint inhibitors. Autoimmun Rev (2018) 17(6):610–6. 10.1016/j.autrev.2018.01.010

Williams TJ, Benavides DR, Patrice K-A, Dalmau JO, de Ávila AL, Le DT, et al.. Association of Autoimmune Encephalitis With Combined Immune Checkpoint Inhibitor Treatment for Metastatic Cancer. JAMA Neurol (2016) 73(8):928–33. 10.1001/jamaneurol.2016.1399

De Velasco G, Je Y, Bossé D, Awad MM, Ott PA, Moreira RB, et al.. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients. Cancer Immunol Res (2017) 5(4):312–8. 10.1158/2326-6066.CIR-16-0237

Cho HY, Choi EK, Lee SW, Jung KO, Seo SK, Choi IW, et al.. Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunol Lett (2009) 127(1):39–47. 10.1016/j.imlet.2009.08.011

Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, et al.. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med (2010) 16(4):452–9. 10.1038/nm.2106

Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al.. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med (2009) 206(13):3015–29. 10.1084/jem.20090847

Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, et al.. Reversal of the TCR stop signal by CTLA-4. Sci (N Y NY) (2006) 313(5795):1972–5. 10.1126/science.1131078

Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al.. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ (2017) 24(10):1739–49. 10.1038/cdd.2017.102

Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell (1992) 71(7):1065–8. 10.1016/S0092-8674(05)80055-8

Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, et al.. Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest (2017) 127(7):2789–804. 10.1172/JCI92079

Matheu MP, Othy S, Greenberg ML, Dong TX, Schuijs M, Deswarte K, et al.. Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat Commun (2015) 6:6219. 10.1038/ncomms7219

Wang XB, Fan ZZ, Anton D, Vollenhoven AV, Ni ZH, Chen XF, et al.. CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation. BMC Immunol (2011) 12:21. 10.1186/1471-2172-12-21

Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, et al.. CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol (2010) 71(10):934–41. 10.1016/j.humimm.2010.07.007

Ware CF, Sedý JR. TNF Superfamily Networks: bidirectional and interference pathways of the herpesvirus entry mediator (TNFSF14). CurrOpinImmunol (2011) 23(5):627–31. 10.1016/j.coi.2011.08.008

Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev (2009) 229(1):244–58. 10.1111/j.1600-065X.2009.00783.

De Trez C, Schneider K, Potter K, Droin N, Fulton J, Norris PS, et al.. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol (Baltimore Md 1950) (2008) 180(1):238–48. 10.4049/jimmunol.180.1.238

Steinberg MW, Cheung TC, Ware CF. The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev (2011) 244(1):169–87. 10.1111/j.1600-065X.2011.01064.x

Oya Y, Watanabe N, Kobayashi Y, Owada T, Oki M, Ikeda K, et al.. Lack of B and T lymphocyte attenuator exacerbates autoimmune disorders and induces Fas-independent liver injury in MRL-lpr/lpr mice. IntImmunol (2011) 23(5):335–44. 10.1093/intimm/dxr017

Krieg C, Han P, Stone R, Goularte OD, Kaye J. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol (Baltimore Md 1950) (2005) 175(10):6420–7. 10.4049/jimmunol.175.10.6420

Liu X, Alexiou M, Martin-Orozco N, Chung Y, Nurieva RI, Ma L, et al.. Cutting edge: A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J Immunol (Baltimore Md 1950) (2009) 182(8):4516–20. 10.4049/jimmunol.0803161

Murphy TL, Murphy KM. Slow down and survive: Enigmatic immunoregulation by BTLA and HVEM. Annu Rev Immunol (2010) 28:389–411. 10.1146/annurev-immunol-030409-101202

Xu Z, Jin B. A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions. Cell MolImmunol (2010) 7(1):11–9. 10.1038/cmi.2009.108

Gao Y, Cui J, He W, Yue J, Yu D, Cai L, et al.. Generation and characterization of polyclonal antibodies against mouse T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory domain by DNA-based immunization. Transplant Proc (2014) 46(1):260–5. 10.1016/j.transproceed.2013.10.039

Li M, Xia P, Du Y, Liu S, Huang G, Chen J, et al.. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J BiolChem (2014) 289(25):17647–57. 10.1074/jbc.M114.572420

Santiago C, Ballesteros A, Martínez-Muñoz L, Mellado M, Kaplan GG, Freeman GJ, et al.. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity (2007) 27(6):941–51. 10.1016/j.immuni.2007.11.008

Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al.. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol (2012) 13(9):832–42. 10.1038/ni.2376

Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al.. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature (2015) 517(7534):386–90. 10.1038/nature13848

Liu Y, Ji H, Zhang Y, Shen X, Gao F, He X, et al.. Recipient T cell TIM-3 and hepatocyte galectin-9 signalling protects mouse liver transplants against ischemia-reperfusion injury. J Hepatol (2015) 62(3):563–72. 10.1016/j.jhep.2014.10.034

Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al.. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol (2005) 6(12):1245–52. 10.1038/ni1271 66. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, et al.. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nat Med (2012) 18(9):1394–400. 10.1038/nm.2871

Xu L, Huang Y, Tan L, Yu W, Chen D, Lu C, et al.. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. IntImmunopharmacol (2015) 29(2):635–41. 10.1016/j.intimp.2015.09.017

Ma CJ, Li GY, Cheng YQ, Wang JM, Ying RS, Shi L, et al.. Cis association of galectin-9 with Tim-3 differentially regulates IL-12/IL-23 expressions in monocytes via TLR signaling. PloS One (2013) 8(8):e72488. 10.1371/journal.pone.0072488

Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al.. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol (Baltimore Md 1950) (2008) 180(9):5916–26. 10.4049/jimmunol.180.9.5916

Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, et al.. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol (BaltimoreMd 1950) (2010) 184(11):6545–51. 10.4049/jimmunol.0903879

Downloads

Published

2023-12-31

How to Cite

Boltayeva Dono Bakhtiyorovna. (2023). REVOLUTIONIZING AUTOIMMUNE DISEASE TREATMENT: EXPLORING IMMUNE CHECKPOINTS AS INNOVATIVE THERAPEUTIC TARGETS. SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES, 2(12), 1049–1067. Retrieved from https://sciencebox.uz/index.php/amaltibbiyot/article/view/9230