ОНА СУТИ ГОРМОНЛАРИ ВА ЯНГИ ТУҒИЛГАН АВЛОДНИНГ ЛАКТАЦИЯ ДАВРИДАГИ ИММУНИТЕТИ

Authors

  • Хасанов Бахтиёр Буртханович Абу Али ибн Сино номидаги Бухоро давлат тиббиёт университети, Узбекистон, Бухоро ш

Keywords:

она сути, каламуш, иммуноглобулинлар, адипонектин, лептин

Abstract

Одамнинг она сутида иммуннологик фаоллIgи бўлган биологик фаол омилларнинг таркиби кенг ўрганилган. Бироқ, лактатсия даврининг дингамикасида каламуш сутининг иммунитет омиллари ҳақида маълумот етарли эмас. ҳали ҳам яхши тушунилмаган. Ушбу мақолада каламуш она сутидаги иммуноглобулин (Ig) таркиби ва лактация даврида бир нечта муҳим адипокинлар ва ўсиш омилларини таҳлил қилиниб, тегишли плазма даражалари билан муносабатлари баҳоланган. Лактация даврида трансформацияловчи ўсиш омили (TGF)-β2 ва TGF-β3 нинг сут концентрацияси биринчи ҳафтада бир даражага кўтарилиши, адипонектин ва лептин эса барқарор бўлиб қолиши кўрсатилаган. Лактатсиянинг иккинчи даврида (14-21 кун), сут эпидермал ўсиш омили (ЕGF) ўсишига қарамасдан, 21-куни фибробласт ўсиш омили 21 (FGF21) камайиши кўрсатилган. Лактация даврида сут IgА концентрацияси аста-секин ўсиб бориши, аммо сезиларли ўзгаришлар кузатилмаганлIgи таъкидланган. Аниқланган IgМ ва IgG-да топилган. Плазма даражасига келсак, иккинчи лактация даврида ўрганилган барча адипокинларда пасайиш кузатилди, IgА ва TGF-1 бундан мустасно, тадқиқот охирида максимал қийматга эришди. IgМ, IgG ва адипокин концентрацияси ўртасида ижобий корреляция аниқланди, сут ва плазма бўлинмалари орасида топилган. Хулоса қилиб айтишимиз мумкинки, ушбу тузилмалардаги ўзгаришлар каламушларнинг сути ва плазмасидаги биологик фаол бирикмалар ва уларнинг лактация давридаги муносабатларини аниқлайди.

References

Хасанов, Б. Б. (2020). Влияние антигенного и токсического воздействия на развитие иммунной системы тонкого кишечника в динамике раннего постнатального онтогенеза. Новый день в медицине, 30(2), 337-339.

Хасанов, Б. Б., Зокирова, Н. Б., & Тухтаев, К. Р. (2021). Влияние токсического гепатита матери на структурно-функциональные взаимоотношения иммунокомпетентных клеток молочной железы лактирующих крыс и тонкой кишки крысят в период молочного вскармливания. Педиатрия, 4, 225-229.

Хасанов, Б. Б. (2022). Морфология молочной железы при беременности и лактации. Бухара. Типография" Sadriddin Salim Buxoriy" при Бухарском государственном университете, 120.

Хасанов, Б. Б. (2022). Иммуногенные свойства молочных желез и грудного молока. Re-health journal, (3 (15)), 21-30.

Хасанов, Б. Б., & Султонова, Д. Б. (2022). Роль селезенки в иммунологических нарушениях организма при хронических заболеваниях печени. Достижения науки и образования, (5 (85)), 91-97.

Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 2017, 13, 100–109. [CrossRef]

Abrams, S.A. Vitamin D in preterm and full-term infants. Ann. Nutr. Metab. 2020, 76 (Suppl. 2), 6–14. [CrossRef] [PubMed]

Agarwal, S.; Karmaus, W.; Davis, S.; Gangur, V. Immune markers in breast milk and fetal and maternal body fluids: A systematic review of perinatal concentrations. J. Hum. Lact. 2011, 27, 171–186. [CrossRef]

Ahima, R.S.; Prabakaran, D.; Flier, J.S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Invest 1998, 101, 1020–1027. [CrossRef]

Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum.

Azagra-Boronat, I.; Tres, A.; Massot-Cladera, M.; Franch, À.; Castell, M.; Guardiola, F.; Pérez-Cano, F.J.; Rodríguez-Lagunas, M.J. Associations of breast milk microbiota, immune factors, and fatty acids in the rat mother-offspring pair. Nutrients 2020, 12, 319. [CrossRef] [PubMed]

Azagra-Boronat, I.; Tres, A.; Massot-Cladera, M.; Franch, À.; Castell, M.; Guardiola, F.; Pérez-Cano, F.J.; Rodríguez-Lagunas, M.J. Lactobacillus fermentum CECT5716 supplementation in rats during pregnancy and lactation affects breast milk composition. J. Dairy Sci. 2020, 103, 2982–2992. [CrossRef] [PubMed]

Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 2013, 60, 49–74. [CrossRef]

Banchereau, J.; Pascual, V.; O’Garra, A. From IL-2 to IL-37: The expanding spectrum of antiinflammatory cytokines. Nat. Immunol. 2012, 13, 925–931. [CrossRef]

Beardmore, J.M.; Richards, R.C. Concentrations of epidermal growth factor in mouse milk throughout lactation. J. Endocrinol. 1983, 96, 287–292. [CrossRef]

Bielicki, J.; Huch, R.; von Mandach, U. Time-course of leptin levels in term and preterm human milk. Eur. J. Endocrinol. 2004, 151, 271–276. [CrossRef]

Blewett, H.J.H.; Cicalo, M.C.; Holland, C.D.; Field, C.J. The immunological components of human milk. Adv. Food Nutr. Res. 2008, 54, 45–80. [CrossRef]

Bronsky, J.; Mitrova, K.; Karpisek, M.; Mazoch, J.; Durilova, M.; Fisarkova, B.; Stechova, K.; Prusa, R.; Nevoral, J. Adiponectin, AFABP, and leptin in human breast milk during 12 months of lactation. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 474–477. [CrossRef]

Brown, K.D.; Blakeley, D.M.; Fleet, I.R.; Hamon, M.; Heap, R.B. Kinetics of transfer of 125I-labelled epidermal growth factor from blood into mammary secretions of goats. J. Endocrinol. 1986, 109, 325–332. [CrossRef]

Bruder, E.D.; Van Hoof, J.; Young, J.B.; Raff, H. Epidermal growth factor and parathyroid hormone-related peptide mRNA in the mammary gland and their concentrations in milk: Effects of postpartum hypoxia in lactating rats. Horm. Metab. Res. 2008, 40, 446–453. [CrossRef]

Burtkhanovich, K. B. (2022). Extragenital Pathology and Immunocompetent Cells Relations of Lactating Breast Gland and Offspring Jejunum. American Journal of Internal Medicine, 10(2), 28-33.

Burtkhanovich, K. B. (2023). Features of the Functional Development of the Gastrointestinal Tract. American Journal of Pediatric Medicine and Health Sciences, 1(4), 60-68.

Burtkhanovich, K. B. (2023). Hystogenesis of lymph nodes of some representatives mammals. American Journal of Pediatric Medicine and Health Sciences, 1(4), 189-196.

Burtkhanovich, K. B. (2023). Modern concepts on the structure of lymph nodes. American Journal of Pediatric Medicine and Health Sciences, 1(4), 182-188.

Burtkhanovich, K. B. (2023). Structural and Functional Features of the Thymus Under Some Impacts. American Journal of Pediatric Medicine and Health Sciences, 1(4), 81-87.

Burtkhanovich, K. B. (2023). Structural and functional reactions of lymph nodes to various antigenic effects. American Journal of Pediatric Medicine and Health Sciences, 1(4), 197-203.

Burtkhanovich, K. B., & Bakhshulloevna, S. D. (2023). Features of Mechanisms of Adaptation and Homeostasis in a Functional System. American Journal of Pediatric Medicine and Health Sciences, 1(4), 169-178.

Butler, J.E.; Kehrli, M.E., Jr. Immunoglobulins and Immunocytes in the Mammary Gland and its Secretions. In Mucosal Immunology, 3rd ed.; Mestecky, J.F., Beinenstock, J., Lamm, M.E., Mayer, L., McGhee, J.R., Strober, W., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; Volume 3, pp. 1763–1793.

Byyny, R.L.; Orth, D.N.; Cohen, S.; Doyne, E.S. Epidermal growth factor: Effects of androgens and adrenergic agents. Endocrinology 1974, 95, 776–782. [CrossRef]

Caballero-Flores, G.; Sakamoto, K.; Zeng, M.Y.; Wang, Y.; Hakim, J.; Matus-Acuña, V.; Inohara, N.; Núñez, G. Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk. Cell Host Microbe 2019, 25, 313–323. [CrossRef] [PubMed]

Camps-Bossacoma, M.; Pérez-Cano, F.J.; Franch, À.; Castell, M. Gut microbiota in a rat oral sensitization model: Effect of a cocoa-enriched diet. Oxid. Med. Cell. Longev. 2017, 2017, 7417505. [CrossRef] [PubMed]

Carbone, F.; La Rocca, C.; Matarese, G. Immunological functions of leptin and adiponectin. Biochimie 2012, 94, 2082–2088. [CrossRef]

Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, À. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011, 141, 1181–1187. [CrossRef] [PubMed]

Çatlı, G.; Dündar, N.O.; Dündar, B.N. Adipokines in breast milk: An update. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 192–201.

Chen, K.; Magri, G.; Grasset, E.K.; Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 2020. [CrossRef] Clin. Perinatol. 2019, 46, 51–64. [CrossRef] [PubMed]

David, C.J.; Massagué, J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 2018, 19, 419–435. [CrossRef] [PubMed]

Dev. 2015, 91, 629–635. [CrossRef] [PubMed] 8. Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 2013, 60, 49–74. [CrossRef] 9. Gavaldà-Navarro, A.; Hondares, E.; Giralt, M.; Mampel, T.; Iglesias, R.; Villarroya, F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci. Rep. 2015, 5, 13717. [CrossRef] [PubMed] 10. Çatlı, G.; Dündar, N.O.; Dündar, B.N. Adipokines in breast milk: An update. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 192–201.

Dvorak, B.; Fituch, C.C.; Williams, C.S.; Hurst, N.M.; Schanler, R.J. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr. Res. 2003, 54, 15–19. [CrossRef]

Erick, M. Breast milk is conditionally perfect. Med. Hypotheses 2018, 111, 82–89. [CrossRef] 5. Roed, C.; Skovby, F.; Lund, A.M. Severe vitamin B12 deficiency in infants breastfed by vegans. Ugeskr. Laeger 2009, 171, 3099–3101.

Externest, D.; Meckelein, B.; Schmidt, M.A.; Frey, A. Correlations between antibody immune responses at different mucosal effector sites are controlled by antigen type and dosage. Infect. Immun. 2000, 68, 3830–3839. [CrossRef]

Frost, B.L.; Jilling, T.; Lapin, B.; Maheshwari, A.; Caplan, M.S. Maternal breast milk transforming growth factor-beta and feeding intolerance in preterm infants. Pediatr. Res. 2014, 76, 386–393. [CrossRef] [PubMed]

Gastroenterol. Nutr. 2017, 65, e60–e67. [CrossRef]

Gavaldà-Navarro, A.; Hondares, E.; Giralt, M.; Mampel, T.; Iglesias, R.; Villarroya, F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci. Rep. 2015, 5, 13717. [CrossRef] [PubMed]

Gnacin´ska, M.; Małgorzewicz, S.; Stojek, M.; Łysiak-Szydłowska, W.; Sworczak, K. Role of adipokines in complications related to obesity: A review. Adv. Med. Sci. 2009, 54, 150–157. [CrossRef]

Grases-Pintó, B.; Abril-Gil, M.; Castell, M.; Pérez-Cano, F.J.; Franch, À. Enhancement of immune maturation in suckling rats by leptin and adiponectin supplementation. Sci. Rep. 2019, 9, 1786. [CrossRef]

Grases-Pintó, B.; Torres-Castro, P.; Marín-Morote, L.; Abril-Gil, M.; Castell, M.; Rodríguez-Lagunas, M.J.; Pérez-Cano, F.J.; Franch, À. Leptin and EGF supplementation enhance the immune system maturation in preterm suckling rats. Nutrients 2019, 11, 2380. [CrossRef]

Hawkes, J.S.; Bryan, D.L.; Gibson, R.A. Variations in transforming growth factor beta in human milk are not related to levels in plasma. Cytokine 2002, 17, 182–186. [CrossRef]

Hochwallner, H.; Alm, J.; Lupinek, C.; Johansson, C.; Mie, A.; Scheynius, A.; Valenta, R. Transmission of allergen-specific IgG and IgE from maternal blood into breast milk visualized with microarray technology. J. Allergy Clin. Immunol. 2014, 134, 1213–1215. [CrossRef] [PubMed]

Houseknecht, K.L.; McGuire, M.K.; Portocarrero, C.P.; McGuire, M.A.; Beerman, K. Leptin is present in human milk and is related to maternal plasma leptin concentration and adiposity. Biochem. Biophys. Res. Commun. 1997, 240, 742–747. [CrossRef] [PubMed]

Hurley, W.L.; Theil, P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011, 3, 442–447. [CrossRef]

Jakaitis, B.M.; Denning, P.W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol. 2014, 41, 423–435. [CrossRef]

Khasanov, B. B. (2009). Structural and functional features of the mammary gland in pregnancy and lactations on the background of toxic hepatitis. Likars' ka sprava, (7-8), 94-97.

Khasanov, B. B. (2020). Experimental chronic toxic hepatitis and hematological features in the dynamics of mother's and the offspring lactation. European Journal of Molecular & Clinical Medicine, 7(09), 1367-1373.

Khasanov, B. B. (2021). Offspring jejunum structural and functional development during breastfeeding against the background of mother’s chronic toxic hepatitis. Europe's Journal of Psychology, 17(3), 330-335.

Khasanov, B. B. (2021). Structural and functional features of immunocompetent breast cells glands during pregnancy and lactation in chronic hepatitis. Psychology and Education, 58(2), 8038-8045.

Khasanov, B. B. Morphology of the mammary gland during pregnancy and lactation. Bukhara. Printing house “Sadriddin Salim Buxoriy” at the Bukhara State University-2022.-S, 120.

Khasanov, B. B., Azizova, F. K., Sobirova, D. R., Otajonova, A. N., & Azizova, P. K. (2022). Toxic hepatitis of the female and the structural and functional formation of the lean intestine of of the offspring in the period breastfeeding.

Khasanov, B. B.; Azimova S.B. (2021). Еxtragenital pathology of the mother and morphological features of the development of the thymus in the period of early postnatal ontogenesis. European Chemical Bulletin, 12(8), 8322-8331.

Khasanov, B.B.; Ilyasov, A.S.; Sultanova, D.B. (2023). Extragenital pathology of the mother and morphological features of the development of the spleen in the period of early postnatal ontogenesis. European Chemical Bulletin, 12(8), 8332-8341.

Khodabakhshi, A.; Mehrad-Majd, H.; Vahid, F.; Safarian, M. Association of maternal breast milk and serum levels of macronutri- ents, hormones, and maternal body composition with infant’s body weight. Eur. J. Clin. Nutr. 2018, 72, 394–400. [CrossRef]

Korhonen, H.; Marnila, P.; Gill, H.S. Milk immunoglobulins and complement factors. Br. J. Nutr. 2000, 84 (Suppl. 1), S75–S80. [CrossRef] [PubMed]

Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in human breast milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [CrossRef]

Lebman, D.A.; Edmiston, J.S. The role of TGF-β in growth, differentiation, and maturation of B lymphocytes. Microbes Infect. 1999, 1, 1297–1304. [CrossRef]

Lönnerdal, B. Bioactive proteins in breast milk. J. Paediatr. Child Health 2013, 49 (Suppl. 1), 1–7. [CrossRef] [PubMed]

Luo, Y.; Liu, M. Adiponectin: A versatile player of innate immunity. J. Mol. Cell Biol. 2016, 8, 120–128. [CrossRef]

Martin, L.J.; Woo, J.G.; Geraghty, S.R.; Altaye, M.; Davidson, B.S.; Banach, W.; Dolan, L.M.; Ruiz-Palacios, G.M.; Morrow, A.L. Adiponectin is present in human milk and is associated with maternal factors. Am. J. Clin. Nutr. 2006, 83, 1106–1111. [CrossRef] [PubMed]

Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.Y.; Dissanayeke, S.; Pampura, A.; Boner, A.L.; Geddes, D.T.; Boyle, R.J.; et al. Immune components in human milk are associated with early infant immunological health outcomes: A prospective three-country analysis. Nutrients 2017, 9, 532. [CrossRef] [PubMed]

Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.Y.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.L.; et al. Colostrum and mature human milk of women from London, Moscow, and Verona: Determinants of immune composition.

Newburg, D.S.; Woo, J.G.; Morrow, A.L. Characteristics and potential functions of human milk adiponectin. J. Pediatr. 2010, 156 (Suppl. 2), S41–S46. [CrossRef] [PubMed]

Nozhenko, Y.; Asnani-Kishnani, M.; Rodríguez, A.M.; Palou, A. Milk leptin surge and biological rhythms of leptin and other regulatory proteins in breastmilk. PLoS ONE 2015, 10, e0145376. [CrossRef] [PubMed]

Nutrients 2016, 8, 695. [CrossRef]

Oddy, W.H.; Rosales, F. A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatr. Allergy Immunol. 2010, 21, 47–59. [CrossRef]

Ogawa, J.; Sasahara, A.; Yoshida, T.; Sira, M.M.; Futatani, T.; Kanegane, H.; Miyawaki, T. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants. Early Hum. Dev. 2004, 77, 67–75. [CrossRef]

Ohtani, Y.; Yonezawa, T.; Song, S.H.; Takahashi, T.; Ardiyanti, A.; Sato, K.; Hagino, A.; Roh, S.G.; Katoh, K. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells. Anim. Sci. J. 2011, 82, 99–106. [CrossRef] [PubMed]

Ozarda, Y.; Gunes, Y.; Tuncer, G.O. The concentration of adiponectin in breast milk is related to maternal hormonal and inflammatory status during 6 months of lactation. Clin. Chem. Lab. Med. 2012, 50, 911–917. [CrossRef] [PubMed]

Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 2012, 985646. [CrossRef]

Penttila, I.A.; van Spriel, A.B.; Zhang, M.F.; Xian, C.J.; Steeb, C.B.; Cummins, A.G.; Zola, H.; Read, L.C. Transforming growth factor-beta levels in maternal milk and expression in postnatal rat duodenum and ileum. Pediatr. Res. 1998, 44, 524–531. [CrossRef] [PubMed]

Pérez-Cano, F.J.; Franch, À.; Castellote, C.; Castell, M. The suckling rat as a model for immunonutrition studies in early life. Clin. Dev. Immunol. 2012, 2012, 537310. [CrossRef]

Pérez-Pérez, A.; Vilariño-García, T.; Fernández-Riejos, P.; Martín-González, J.; Segura-Egea, J.J.; Sánchez-Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017, 35, 71–84. [CrossRef]

Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastroin- testinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [CrossRef] [PubMed]

Procaccini, C.; La Rocca, C.; Carbone, F.; De Rosa, V.; Galgani, M.; Matarese, G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017, 66, 120–129. [CrossRef]

Raaberg, L.; Nexø, E.; Tollund, L.; Poulsen, S.S.; Christensen, S.B.; Christensen, M.S. Epidermal growth factor reactivity in rat milk. Regul. Pept. 1990, 30, 149–157. [CrossRef]

Ramírez-Santana, C.; Pérez-Cano, F.J.; Castellote, C.; Castell, M.; Rivero, M.; Rodríguez-Palmero, M.; Franch, À. Higher immunoglobulin production in conjugated linoleic acid-supplemented rats during gestation and suckling. Br. J. Nutr. 2009, 102, 858–868. [CrossRef] [PubMed]

Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [CrossRef]

Roed, C.; Skovby, F.; Lund, A.M. Severe vitamin B12 deficiency in infants breastfed by vegans. Ugeskr. Laeger 2009, 171, 3099–3101.

Sanjabi, S.; Oh, S.A.; Li, M.O. Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 2017, 9, a022236. [CrossRef]

Savino, F.; Lupica, M.M.; Benetti, S.; Petrucci, E.; Liguori, S.A.; Cordero Di Montezemolo, L. Adiponectin in breast milk: Relation to serum adiponectin concentration in lactating mothers and their infants. Acta Paediatr. 2012, 101, 1058–1062. [CrossRef] [PubMed]

Schaudies, R.P.; Grimes, J.; Wray, H.L.; Koldovský, O. Identification and partial characterization of multiple forms of biologically active EGF in rat milk. Am. J. Physiol. 1990, 259, G1056–G1061. [CrossRef]

Sebastiani, G.; Barbero, A.H.; Borrás-Novell, C.; Casanova, M.A.; Aldecoa-bilbao, V.; Andreu-Fernández, V.; Pascual Tutusaus, M.; Ferrero Martínez, S.; Gómez Roig, M.D.; García-Algar, O. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients 2019, 11, 557. [CrossRef]

Shelby, R.D.; Cromeens, B.; Rager, T.M.; Besner, G.E. Influence of growth factors on the development of necrotizing enterocolitis.

Sitarik, A.R.; Bobbitt, K.R.; Havstad, S.L.; Fujimura, K.E.; Levin, A.M.; Zoratti, E.M.; Kim, H.; Woodcroft, K.J.; Wegienka, G.; Ownby, D.R.; et al. Breast milk transforming growth factor β is associated with neonatal gut microbial composition. J. Pediatr.

Smith-Kirwin, S.M.; O’Connor, D.M.; De Johnston, J.; Lancey, E.D.; Hassink, S.G.; Funanage, V.L. Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab. 1998, 83, 1810–1813. [CrossRef] [PubMed]

Song, J.; Deng, T. The adipocyte and adaptive immunity. Front. Immunol. 2020, 11, 593058. [CrossRef]

Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal growth factor and intestinal barrier function. Mediat. Inflamm 2016, 2016, 1927348. [CrossRef] [PubMed]

Thorisdottir, A.V.; Ramel, A.; Palsson, G.I.; Tomassson, H.; Thorsdottir, I. Iron status of one-year-olds and association with breast milk, cow’s milk or formula in late infancy. Eur. J. Nutr. 2013, 52, 1661–1668. [CrossRef]

Torres-Castro, P.; Abril-Gil, M.; Rodríguez-Lagunas, M.J.; Castell, M.; Pérez-Cano, F.J.; Franch, À. TGF-β2, EGF, and FGF21 growth factors present in breast milk promote mesenteric lymph node lymphocytes maturation in suckling rats. Nutrients 2018, 10, 1171. [CrossRef]

Torres-Castro, P.; Grases-Pintó, B.; Abril-Gil, M.; Castell, M.; Rodríguez-Lagunas, M.J.; Pérez-Cano, F.J.; Franch, À. Modulation of the systemic immune response in suckling rats by breast milk TGF-β2, EGF and FGF21 supplementation. Nutrients 2020, 12, 1888. [CrossRef]

Wagner, C.L.; Hollis, B.W. Early-life effects of vitamin D: A focus on pregnancy and lactation. Ann. Nutr. Metab. 2020, 76 (Suppl. 2), 16–28. [CrossRef]

Wang, Y.; Jiang, X.; He, J.; Diraviyam, T.; Zhang, X. Quantitative investigation on correlation between IgG and FcRn during gestation and lactating periods in rat. Am. J. Reprod. Immunol. 2016, 75, 81–85. [CrossRef]

Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 2020, 11, 1153. [CrossRef]

Weyermann, M.; Beermann, C.; Brenner, H.; Rothenbacher, D. Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clin. Chem. 2006, 52, 2095–2102. [CrossRef] [PubMed]

Yang, Z.; Ming, X.F. Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Front. Immunol. 2014, 5, 533. [CrossRef]

Zelechowska, P.; Kozłowska, E.; Pastwin´ska, J.; Agier, J.; Brzezin´ska-Błaszczyk, E. Adipocytokine involvement in innate immune mechanisms. J. Interferon Cytokine Res. 2018, 38, 527–538. [CrossRef] [PubMed]

Zhang, M.; Liao, Y.; Lönnerdal, B. Milk growth factors and expression of small intestinal growth factor receptors during the perinatal period in mice. Pediatr. Res. 2016, 80, 759–765. [CrossRef]

Downloads

Published

2024-03-12

How to Cite

Буртханович, Х. Б. . (2024). ОНА СУТИ ГОРМОНЛАРИ ВА ЯНГИ ТУҒИЛГАН АВЛОДНИНГ ЛАКТАЦИЯ ДАВРИДАГИ ИММУНИТЕТИ. SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES, 3(3), 67–80. Retrieved from https://sciencebox.uz/index.php/amaltibbiyot/article/view/9991

Most read articles by the same author(s)